
MA 3046 - Matrix Analysis

Problem Set 2 - Section I - Fundamenals

1. Show that, for any nonzero vectors u and v in C
√ m, the product uvH is a rank one

matrix in C
√ m×m. Also show that, if vH u 6= −1, then

I− uvH

vHu + 1
=

(
I + uvH

)−1

(Note that
(
I + uvH

)
is commonly called a rank one perturbation of the identity.)

2. Consider the following matrices:

A =




1 2 2
2 1 −2
2 −2 1


 , B =




1 2 −1
−2 1 1

1 −2 1


 , C =




1
6

1
2

1
6

1
2

3
6

1
2

5
6 −1

2




D =
[

1 i
i 1

]
, E =




1
2

1
2 − i

2
1
2

1
2

1
2

i
2

−1
2

1
2 −1

2
1
2 − i

2

1
2

−1
2

−1
2

i
2




where i =
√
−1. Which, if any, of these are unitary? Which, if any, are orthogonal? Of

those that are neither, which are easily converted to unitary ones?

3. Consider the matrix:

C =




1
6

5
6

3
6

−1
6

5
6 −1

6
1
6

3
6




Show that CHC = I, but CCH 6= I and so CH 6= C−1. Explain why this is not a
contradiction.
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4. Consider the matrix-vector equation

B [x ]B =




1
3

2
3 −2

3
2
3

−2
3

−1
3

2
3

1
3

2
3


 [x ]B =




1

−7

2




a. Solve this system for [x ]B by Gaussian elimination.
b. Solve this system for [x ]B, without using elimination, but using the facts that B

is unitary and [x ]B represents the coordinates of [ 1 − 7 2 ]H in terms of the columns
of B.

5. Show that if Q(1) and Q(2) are any two unitary matrices of the same size, then their
product, i.e. Q(1)Q(2) is also Unitary.

6. Consider the three most common measures for the norm of a vector x = (x1, x2, . . . , xn)
(or the equivalent row or column vector forms):

‖x ‖1 = |x1| + |x2| + · · ·+ |xn|

‖x ‖2 =
√

x2
1 + x2

2 + · · ·x2
n

‖x ‖∞ = max
i
|xi|

Compute each of these norms for each of the following vectors.
a. x = (−1, 2,−2)
b. x = (−4)
c. x = (10,−3, 12)
d. x = (102,−17,−1)
e. x = (.1,−.2,−.4)
f. x = (−12,−2, 4, 6, 5)

7. Any vector norm induces a corresponding matrix norm according to the relationship:

‖A ‖ = max
x

‖Ax ‖
‖x ‖

Show that, for any matrix norm and any scalar α, ‖αA ‖ = |α| ‖A ‖
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8. Consider the three matrices:

a.

[
2 −5 1
1 3 2

]
b.




10 7 −2
6 4 −1

−2 1 1


 c.




1 −1
2 2
1 2




For each of these matrices, and for each of the norms described in problem 6:
(i.) Pick five different “input” vectors (x). (Make sure at least some of them have

some negative components!)

(ii.) For each of these inputs, compute the ratio
‖Ax ‖
‖x ‖

(iii.) Based on your answers to part b., determine a lower bound for ‖A ‖
(iv.) Compare your lower bound to the actual corresponding value of ‖A ‖ as deter-

mined by MATLAB’s relevant norm( ) command.

9. The infinity norm of a vector:

‖x ‖∞ = max
i

|xi|

i.e., the component with the greatest magnitude, induces a corresponding matrix norm:

‖A ‖∞ = max
x

‖Ax ‖∞
‖x ‖∞

= max
‖x ‖∞=1

‖Ax ‖∞

Show that ‖A ‖∞ = max
i





n∑

j=1

|aij|



, or, in other words, the matrix infinity norm

is just the largest of the sums of the magnitudes of the coefficients on each row. For this
reason, the matrix infinity norm is commonly called the row-sum norm.

10. Consider the following vectors and matrices:

(a.) x =



−6

4
−4


 (b.) y =



−9

2
−9
−2


 (c.) z =




−1
−4

2
5
1




(d.) A =




8 8 −4 2
5 −6 −1 −2

−7 −4 −9 0
−10 3 10 −3


 (e.) B =




−6 −10 −2 7 0
−6 5 7 −10 4

2 −1 1 4 −1
−5 9 −6 −2 −4
−6 −1 3 7 −6




Find the infinity norm of each.

3



11. Show directly that the one norm, defined by

‖x ‖1 =
n∑

i=1

|xi| = |x1| + |x2| + · · · + |xn|

satisfies the following general properties:
(a.) ‖x ‖1 > 0 , x 6= 0
(b.) ‖x + y ‖1 ≤ ‖x ‖1+‖y ‖1 , where x and y are any vectors. (This so-called triangle

inequality essentially ensures the shortest “distance” between points must be the
line connecting them.)

(c.) ‖αx ‖1 = |α|‖x ‖1 , where x is any vector and α is any scalar. (This formula
ensures that multiplying any vector by a scalar factor simply changes its “length”
by that factor, and also that ‖0 ‖1 = 0.)

12. Using MATLAB, graph {
Ax | x2

1 + x2
2 = 1

}

for each of the following matrices. Based on your figures, estimate the singular values
of each matrix, and then compare your estimates to the results of MATLAB’s svd( )
command.

a.

[
3 1
1 1

]
b.

[
−4 −1

2 2

]
c.

[
2 1
2 1

]

13. Find the singular value decomposition of each of the following matrices, and compare
your results to the results of MATLAB’s svd( ) command.

a.

[
3 0
0 1

]
b.

[
3 0
0 −2

]
c.

[
1 1
1 1

]

14. Using the singular value decomposition, show that, for any matrix A,

Null(AHA) =Null(A)
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15. The SVD is commonly developed from an eigenvalue and eigenvector approach instead
of from the viewpoint of Euclidean norms. Specifically, we can show that, for any matrix A,
the singular values satisfy σi =

√
|λi|, where the λi are the eigenvalues of AHA, and the

right singular vectors of A (i.e., the v(i)) are the eigenvectors of AHA. This leads to
constructing the (reduced) SVD via the following procedure:

(i.) Form the product AH A.
(ii.) Find the eigenvalues (λi) and eigenvectors (v(i)) of that product.
(iii.) For each λi 6= 0, define σi =

√
λi , where σ1 ≥ σ2 ≥ . . . ≥ σk > 0.

(iv.) For each σi 6= 0, define u(i) = 1
σi

Av(i), where v(i) is the eigenvector associated
with λi.

(Unfortunately, as we shall see later, this procedure is not particularly well suited for
“large” matrices.) Apply this procedure to find the SVD of the matrix

A =




26 18
1 18

14 27




16. Repeat the calculation of the (reduced) SVD using the eigenvalue and eigenvector
approach from problem 15 for the matrix:

A =




2 4
2 4
2 4
2 4




17. Repeat the calculation of the SVD using the eigenvalue and eigenvector approach from
problem 15 for the matrix:

A =
[

16 −2
13 14

]

18. Repeat the calculation of the (reduced) SVD using the eigenvalue and eigenvector
approach from problem 15 for the matrix:

A =




3 1
1 3
0 0
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19. The equation AV̂ = ÛΣ̂ always implies that AV̂ V̂H = ÛΣ̂ V̂H . However, if V̂ is
“only” a nonsquare matrix with orthonormal columns, the latter does not immediately
allow us to conclude the reduced SVD, i.e. that A = ÛΣ̂ V̂H , since, it it is quite likely
that V̂ V̂H 6= I. However, if we can append enough additional orthonormal columns to V̂
to create a square matrix, and if all of those additional columns lie in Null(A), then we

can still derive the reduced SVD. To see why this is true, assume V =
[

V̂ ˆ̂V
]
, where all

the columns of ˆ̂V lie in Null(A). Show that, in this case

V̂ V̂H = I− ˆ̂V ˆ̂V
H

and therefore AV̂ V̂H = A.
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